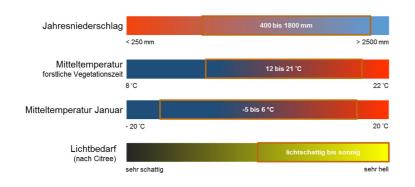
Silberlinde (Tilia tomentosa Moench)


Kurzbeschreibung

Die Silberlinde ist ein 30-35 m hoher trockentoleranter Baum, der in der Regel Stammdurchmesser von 60 cm und ein Alter von bis zu 200 Jahren erreicht. Vielfältige positive Charaktereigenschaften zeichnen die Baumart aus, wie hohe Wuchsleistung, vielfältige Nutzungsmöglichkeiten des Holzes und sehr gute ökologische Eigenschaften (wertvolle Nahrungsquelle für Bienen und Hummeln, bodenverbessernde Laubstreu).¹

Foto: Siebrand

Standortansprüche

Natürlich vergesellschaftete Mischbaumarten

Quercus robur, Q. frainetto, Q. cerris
Acer campestre
Carpinus betulus
Ulmus minor
Pyrus pinaster
Fraxinus ornus

Ausschlusskriterien:

Pseudogley auf Verebnungen, Ton, Staunässe

(1) Natürliche Verbreitung und Eignungsbewertung für Rheinland-Pfalz

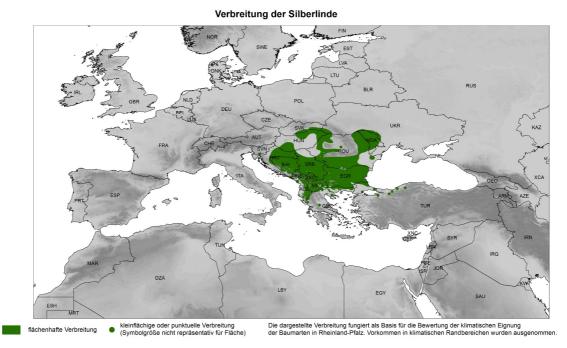
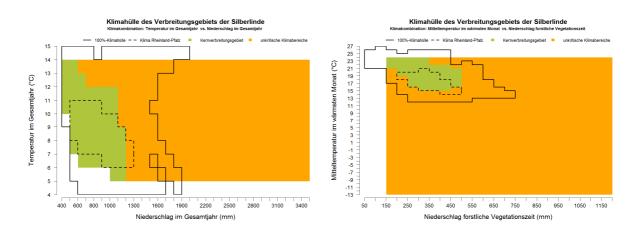
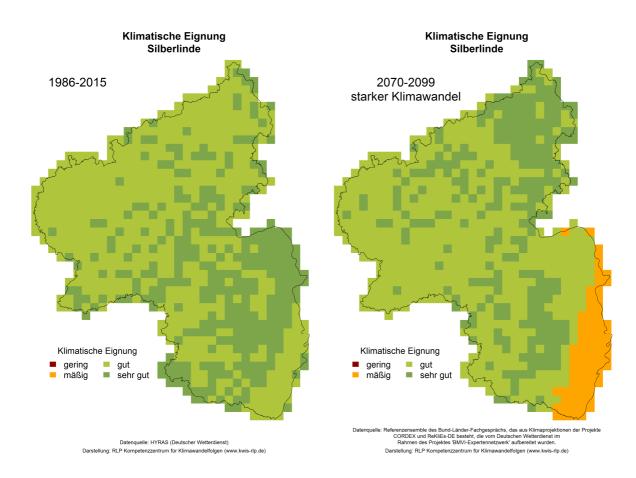



Abbildung 1: Natürliches Verbreitungsgebiet der Silberlinde.


Das natürliche Verbreitungsgebiet befindet sich auf der Balkan-Halbinsel und der nordwestlichen Türkei mit einem Inselvorkommen im Nurgebirge (südliche Zentral-Türkei)¹. Vorkommen gibt es auch in Ungarn und Rumänien².

Klimatische Charakterisierung der natürlichen Verbreitung

Abbildung 2: Klimahüllen zur bioklimatischen Charakterisierung des natürlichen Verbreitungsgebietes. Neben dieser Auswahl wurden 14 weitere Klimahüllen zur Eignungsbewertung herangezogen. Ausführliche Informationen unter https://forstnet.wald-rlp.de (Wissensspeicher – Biologische Produktion – Steuerung der Waldentwicklung - Standort und Baumartenwahl)

Gegenwärtige und zukünftige klimatische Eignung in Rheinland-Pfalz

Abbildung 3: Klimatische Eignung in Rheinland-Pfalz in der Gegenwart (1971-2000, Datensatz Hyras, Deutscher Wetterdienst) und in der Zukunft (2070-2099) nach dem Klimaszenario RCP8.5 (Modellkombinationen BMVI Expertennetzwerk). Dargestellt ist die Anzahl der Klimakombinationen, die mit dem Standort übereinstimmen.

(2) Standortansprüche

Allg. Standortbeschreibung

Die Silberlinde kommt in Höhenlagen zwischen 700 und 1400 m vor, bei gut über das Jahr verteilten Niederschlägen¹⁻³.

Lebensbereich nach Roloff & Bärtels (2008)⁴: 6.3.2.3

Wasserhaushalt (Trockenheits-, Staunässetoleranz, Hydromorphiestufe)

Im natürlichen Verbreitungsgebiet liegen die Jahresniederschläge bei 400-1800 mm, die Niederschläge in der forstlichen Vegetationszeit bei 150-700 mm.

resistent gegenüber Trockenheit²

empfindlich gegenüber Staunässe⁵

bevorzugt frische Böden, kommt aber auch auf extrem trockenen vor, in Bezug auf den Wasserhaushalt ähnlich wie *Castanea sativa, Sorbus torminalis, Pinus nigra*³

Bodenansprüche (Nährstoffansprüche, Kalktoleranz, pH-Wert, Tontoleranz)

fruchtbare, tiefe, wenig saure oder neutrale Mineralböden, vorwiegend auf Löß, auf Sanden, auf basischen Gesteinen; gemieden wird Pseudogley auf Verebnungen¹

kommt auch auf armen Standorten gut zurecht⁶ mittlere Nährstoffansprüche, ähnlich wie *Quercus petraea*³ kalkliebend, nicht für Ton geeignet, bevorzugt gut drainierte Böden³

Licht-, Wärmeansprüche (Strahlungstoleranz / Bedürfnisse Einstrahlungswinkel)

junge Bäume ertragen Schatten, ältere haben hohe Lichtansprüche¹

kontinental-trockenes Klima

Im natürlichen Verbreitungsgebiet liegen die Jahresmitteltemperaturen von 5-14 °C, im wärmsten Monat bei 14-24 °C.

Waldgesellschaften

vergesellschaftet mit *Quercus robur, Q. frainetto, Q. cerris, Acer campestre, Carpinus betulus, Ulmus minor, Pyrus pinaster, Fraxinus ornus*²

spielt eine wichtige Rolle in hainbuchen- und kastanienreichen Eichenwäldern³ dominant im thermophilen mediterranen Lindenwald, präsent im mesophytischen Stieleichen-Hainbuchenwald, im illyrischen und moesischen submontanen Buchenwald, im Orient-Buchen- und Hainbuchen-Orientbuchenwald (*Tree Species Matrix*)⁷

(3) Abiotische und biotische Risiken

Dürre- und Hitzetoleranz

toleriert Hitze und Sommertrockenheit¹ die Rinde kann durch Sonnenbrand geschädigt werden¹

Frostempfindlichkeit

frosthart in ihrem natürlichen Verbreitungsgebiet und in Mitteleuropa³ Im natürlichen Verbreitungsgebiet liegen die mittleren Januartemperaturen bei -5 bis 6 °C.

Sturmanfälligkeit

sturmfest (kräftiges und tiefreichendes Wurzelsystem)³

Schädlinge

wird selten von Pathogenen befallen³

Pilze: Fomes fomentarius, Ganoderma adspersum, Gloeoporus dichrous, Polyporus squamosu,

Cercospora microsora, selten Verticillium³

Insekten: Milbenbefall während Trockenperioden, Japanischer Borkenkäfer³

Wollige Napfschildlaus (Pulvinaria regalis)8

Empfindlichkeit gegenüber Wildeinfluss

wird stark vom Rotwild geschält³

(4) Waldwirtschaftliche Hinweise

Verjüngung (Naturverjüngung, künstlich, Mineralbodenkeimer)

mannbar mit 20-25 Jahren, danach jährliche Fruktifikation, Blüte im Juli¹
Samen mit Dormanz, Stratifizierung durch 5 Monate hohe und 5 Monate tiefe Temperaturen³
Einbringung trupp-, gruppen- bis horstweise im Reihenverband, Z-Baum-orientierte
Hochdurchforstung ab einem Alter von 20-25 Jahren¹
keine Mineralbodenkeimung³

Stockausschlagfähigkeit

hohe Stockausschlagfähigkeit, Wurzelbrut¹

Genetische Ressourcen, Saatgutverfügbarkeit und gesetzliche Grundlagen

Die Art unterliegt nicht dem Forstvermehrungsgutgesetz⁹. Standorte genetischer Ressourcen nach EUFGIS: 17 in Rumänien, 3 in der Türkei¹⁰ Versuchsflächen gibt es in Deutschland, Österreich und der Schweiz³.

(5) Leistung

Wachstum

hohe Wuchsleistung, rasches Jugendwachstum: 1,2 bis 3 m im Alter von 5 Jahren, 3 bis 5,6 m im Alter von 10 Jahren; größter Höhenzuwachs im Alter von 15-20 Jahren; die astreine Schaftlänge beträgt bis zu 13 m^{1}

Holzeigenschaften, Verwendung und ökonomische Bedeutung

vielfältige Nutzung des Holzes: Rahmenholz für Möbel, Spielwaren, Holzgefäße, Schnitzarbeiten, Bilderrahmen, Jalousien, Bienenstöcke, Sperrholz, Fassbau, Holzkohle, Kisten, Furnier¹
Das Holz ist gelblich-weiß und lässt sich leicht bearbeiten, es schwindet wenig, es ist bei geringer Luftfeuchte sehr dauerhaft¹. Das Holz lässt sich gut verspannen und polieren³.

Ökosystemleistungen

wertvolle Nahrungsquelle für Bienen und Hummeln¹ bodenverbessernde Laubstreu¹ Krone als Tierfutter, medizinische Verwendung³

(6) Naturschutz und Biodiversität

Potenzial für Invasivität

Die Silberlinde kann durch vegetative Verjüngung ihren Standort behaupten, ein Invasionspotential ist aber nicht erkennbar¹.

Hybridisierung

fertile Hybriden mit Winterlinde¹

Artenvielfalt

k. A.

Literaturverzeichnis

- [1] Binder, F. (2016) Kurzportrait Silberlinde (Tilia tomentosa). www.waldwissen.net.
- [2] Turok, J., Jensen, J., Palmberg-Lerche, C., Rusanen, M., Russel, K., Vries, S. d., Lipman, E. (1998) Noble Hadwoods Network. Report of the third meeting. Sagadi, Estonia. IPGRI. EUFORGEN.
- [3] Avila, A. L. d., Albrecht, A. (2018) Alternative Baumarten im Klimawandel: Artensteckbriefe eine Stoffsammlung, Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (Hrsg.).
- [4] Roloff, A., Bärtels, A. (2008) Flora der Gehölze. BEstimmung, Eigenschaften und Verwendung, Eugen Ulmer KG 3. Auflage.
- [5] TU Dresden, P. f. F. (2012-2015) Citree ein Forschungsprojekt der TU Dresden, https://citree.de/db-names.php.
- [6] Körber, K. (2015) Gedanken zur Gehölzverwendung im Klimawandel, *Bayerische Landesanstalt für Weinbau und Gartenbau, Veitshöchheimer Berichte*.
- [7] Rigo, D. D., Caudullo, G., Durrant, T. H., San-Miguel-Ayanz, J. (2016) The European Atlas of Forest Tree Species: modelling, data and information on forest tree species, *In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. e01aa69+.*
- [8] (2019) GALK e.V. Deutsche Gartenamtsleiterkonferenz, Straßenbaumliste, https://www.galk.de.
- [9] Bundestag. (2015) Forstvermehrungsgutgesetz vom 22. Mai 2002 (BGBl. I S. 1658), das zuletzt durch Artikel 414 der Verordnung vom 31. August 2015 (BGBl. I S. 1474) geändert worden ist.
- [10] European Forest Institute. EUFGIS European Information System on Forest Genetic Resources.